Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.
Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.
Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.
Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.
Get tips on using Cell Cycle Assay Cell-Clock™ to perform Cell cycle assay mouse - RAW 264.7
Get tips on using MTT Cell Growth Assay Kit to perform Cell cytotoxicity / Proliferation assay cell type - oral squamous cell carcinoma
Get tips on using Cell Proliferation ELISA, BrdU to perform Cell cytotoxicity / Proliferation assay cell type - FADU
Get tips on using Cell Counting Kit-8 to perform Cell cytotoxicity / Proliferation assay cell type - HeLa
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment