Protein Expression Prokaryotic cells L. lactis

- Found 8150 results

Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA.

RNA RNA isolation / purification Tissue Mouse Lymph node

Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA

RNA RNA isolation / purification Tissue Rat Liver

Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA

RNA RNA isolation / purification Tissue Rat Lung

Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA

RNA RNA isolation / purification Tissue Rat Lymph node

Get tips on using LIVE/DEAD™ FungaLight™ Yeast Viability Kit, for flow cytometry to perform Live / Dead assay yeast - Urediniospore

Products Thermo Fisher Scientific LIVE/DEAD™ FungaLight™ Yeast Viability Kit, for flow cytometry

Get tips on using CD273 (PD-L2) Antibody, anti-mouse, PerCP-Vio® 700 to perform Flow cytometry Anti-bodies Mouse - CD273/PD-L2

Products Miltenyibiotec CD273 (PD-L2) Antibody, anti-mouse, PerCP-Vio® 700

Get tips on using LIVE/DEAD™ FungaLight™ Yeast Viability Kit, for flow cytometry to perform Live / Dead assay yeast - Saccharomyces cerevisiae

Products Thermo Fisher Scientific LIVE/DEAD™ FungaLight™ Yeast Viability Kit, for flow cytometry

Get tips on using LIVE/DEAD™ FungaLight™ Yeast Viability Kit, for flow cytometry to perform Live / Dead assay yeast - Candida albicans

Products Thermo Fisher Scientific LIVE/DEAD™ FungaLight™ Yeast Viability Kit, for flow cytometry

Get tips on using CD171 (L1CAM) Antibody, anti-human, PE-Vio® 770, REAfinity™ to perform Flow cytometry Anti-bodies Human - CD171/L1CAM

Products Miltenyibiotec CD171 (L1CAM) Antibody, anti-human, PE-Vio® 770, REAfinity™

Isolating DNA from tissues and paraffin-embedded tissue samples can be challenging as double-stranded DNA is physically fragile and highly susceptible to exo- and endonucleases. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in the presence of DNAse inhibitors. Further, extracting DNA from the nucleus need specific methods by combining physical, mechanical and chemical lysis approaches,

DNA DNA isolation / purification Tissue lung

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms