dna-quantification-human-pc-3

- Found 6207 results

Get tips on using MethylFlash Methylated DNA 5-mC Quantification Kit to perform DNA methylation profiling Whole genome profiling - C2C12 mouse myoblast cells

Products Epigentek MethylFlash Methylated DNA 5-mC Quantification Kit

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Human A253 PC-7

The estimation of DNA methylation level heavily depends on the complete conversion of non-methylated DNA cytosines. It is crucial to ensure complete conversion of non-methylated cytosines in DNA. Therefore, it is important to incorporate controls for bisulfite reactions, as well as to pay attention to the appearance of cytosines in non-CpG sites after sequencing, which is an indicator of incomplete conversion.

DNA DNA methylation profiling Whole genome profiling OVCAR-3 human ovarian cancer

Get tips on using NucleoBond® PC to perform Plasmid Isolation Enterobacteriaceae

Products Macherey Nagel NucleoBond® PC

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification qPCR

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification Coloremetric

RNA quantification for appropriate concentration and quality (260/280 ratio) is an important step before downstream analysis (including sequencing, RT-qPCR, etc.). Having insufficient RNA quantities or a high salt or phenol in the RNA product can lead to variable or irreproducible downstream results. The various methods used for RNA quantification include: 1. UV spectrophotometric (challenges include: low sensitivity, cannot distinguish between nucleic acid species), 2. Fluorescence-based (challenges include: requires standards, cannot measure amplifiability, not sequence-specific), and 3. RT-PCR (challenges include: requires standards, time-intensive, costly). In order to overcome these challenges, and also to ensure the proper quantification and quality control for RNA product, it is important to use at least two or more methods in order to discard any inconsistencies. Using standards for calibrations increases the sensitivity range for RNA detention (fluorescence- and RT-PCR-based methods). When using RT- PCR, it is important to choose correct primers, aligning to the desired site on the template and of appropriate product length, along with positive, negative and loading controls. It is also important to have at least two primer pairs in order to confirm results.

RNA RNA quantification Fuorimetric

DNA damage assay is a standard method for determining in-vivo/in-vitro genotoxicity by measuring the breaks in the DNA chain of animal and plant cells. Initial DNA damage leads to cell cycle arrest and, at the final stages, leads to induction of senescence or cell death (apoptosis, necrosis, autophagy, or mitotic catastrophe). Detection of DNA damage from mild to moderate to severe is challenging when studying genotoxicity in the pool of cells. It is favorable to use DNA damage assay kits available for prominent identification of the extent of damage in the analysis.

Cellular assays DNA Damage Assay SK-OV-3

Get tips on using Human Apoptosis Array G1 to perform Apoptosis assay cell type - PC-3

Products Raybiotech Human Apoptosis Array G1

The most widely used method for protein quantification is by spectrophotometry. The concentration of the protein in the samples is measured at an absorbance of 280 nm. The absorbance of the sample protein is then plotted against a standard curve. This method allows for total protein quantification in a sample (cell and tissue extracts). Before analysing the concentration of protein in the sample, it is important to choose the right test method.  For high protein concentration samples (above 5 - 160 mg/ml) the best method is to use the Biuret test. For low concentrations samples (between 1 - 2000µg/ml) the best methods are Lowry assay, BCA assay, Bradford assay and coomassie blue (for exact sensitivity of the test kits you use, refer to manufacturer's protocol). If the samples contain detergents like Triton X-100 then BCA assay is the best choice. For samples that have proteins larger than 3 KDa in size Bradford assay is the best choice. Each method has advantages and disadvantages, plan your analysis considering your sample characteristics.

Proteins Protein quantification Colorimetric method

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms