Get tips on using Dead Cell Apoptosis Kit with Annexin V Alexa Fluor™ 488 & Propidium Iodide (PI) to perform Apoptosis assay cell type - SH-SY5Y
Get tips on using Dead Cell Apoptosis Kit with Annexin V Alexa Fluor™ 488 & Propidium Iodide (PI) to perform Apoptosis assay cell type - HeLa cells
Get tips on using ApopTag® Peroxidase In Situ Apoptosis Detection Kit to perform TUNEL assay cell type - HNSCC Detroit 562 human head and neck tumor cells
Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - MDA-MB-231 human breast cancer cells
Get tips on using ROS-ID® Total ROS/Superoxide detection kit to perform ROS assay cell type - PLHC-1, SK-HEP-1, Hep3b, HepG2 human hepatocellular carcinoma
Get tips on using MitoSOX™ Red Mitochondrial Superoxide Indicator, for live-cell imaging to perform ROS assay cell type - A549 human adenocarcinomic human alveolar basal epithelial cells
Get tips on using LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation to perform Live / Dead assay mammalian cells - rat testicular tissue
Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment