angiogenesis-assay-human-hipsc-1-ec

- Found 6487 results

Get tips on using Cultrex® In Vitro Angiogenesis Assay Tube Formation Kit to perform Angiogenesis assay human - hRMVEC

Products Bio-Techne Cultrex® In Vitro Angiogenesis Assay Tube Formation Kit

Get tips on using Cultrex® In Vitro Angiogenesis Assay Tube Formation Kit to perform Angiogenesis assay human - HUVEC

Products Bio-Techne Cultrex® In Vitro Angiogenesis Assay Tube Formation Kit

Get tips on using Cultrex® In Vitro Angiogenesis Assay Endothelial Cell Invasion Kit to perform Angiogenesis assay human - HMVEC

Products Trevigen Cultrex® In Vitro Angiogenesis Assay Endothelial Cell Invasion Kit

Get tips on using pUC19/Pr-EC to perform Protein Expression Eukaryotic cells - K. lactis α-l-Fucosidase

Products Christopher H. Taron, New England Biolabs, Ipswich pUC19/Pr-EC

Get tips on using Lysozyme EC 3.2.1.17 (Concentrate) to perform Immunohistochemistry Mouse - Lysozyme

Products Agilent Technologies Lysozyme EC 3.2.1.17 (Concentrate)

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media hiPSC differentiation into Human Neuronal cells

Get tips on using Corning® BioCoat™ Angiogenesis System: Endothelial Cell Tube Formation to perform Angiogenesis assay human - HMVEC

Products Corning Corning® BioCoat™ Angiogenesis System: Endothelial Cell Tube Formation

Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.

Cellular assays Cell cycle assay human PANC-1

Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.

Cellular assays Cell cycle assay human THP-1

TUNEL assay is the cell death detection method where the biochemical marker of apoptosis is DNA fragmentation. The assay involves the microscopical detection of generated DNA fragments with free 3'-hydroxyl residues. in apoptotic cells using enzyme terminal deoxynucleotidyl transferase (TdT) which adds biotinylated nucleotides at the site of DNA breaks. Major challenges of this method involve proper access of the enzyme which could be hampered by poor permeabilization and/or excessive fixation with cross-linking fixative (common with archival tissue). This issue can be resolved by optimizing the incubation time with Proteinase K or CytoninTM.

Cellular assays TUNEL assay cell type PANC-1 human pancriatic cancer

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms