High-resolution melting (HRM) analysis

- Found 4927 results

Get tips on using Culture-Insert 4 Well in µ-Dish 35 mm, high to perform Cell migration / Invasion cell type - MCF7

Products Ibidi Culture-Insert 4 Well in µ-Dish 35 mm, high

Get tips on using HyClone Dulbecco's Modified Eagle Medium (DMEM) with high glucose: Liquid to perform 3D Cell Culture Media U87MG cells- glioblastoma spheres

Products Cytiva HyClone Dulbecco's Modified Eagle Medium (DMEM) with high glucose: Liquid

Get tips on using Color-coded Prestained Protein Marker, High Range (43-315 kDa) #12949 to perform Protein Ladder Prestained

Products Cell Signaling Technology Color-coded Prestained Protein Marker, High Range (43-315 kDa) #12949

The most widely used method for protein quantification is by spectrophotometry. The concentration of the protein in the samples is measured at an absorbance of 280 nm. The absorbance of the sample protein is then plotted against a standard curve. This method allows for total protein quantification in a sample (cell and tissue extracts). Before analysing the concentration of protein in the sample, it is important to choose the right test method.  For high protein concentration samples (above 5 - 160 mg/ml) the best method is to use the Biuret test. For low concentrations samples (between 1 - 2000µg/ml) the best methods are Lowry assay, BCA assay, Bradford assay and coomassie blue (for exact sensitivity of the test kits you use, refer to manufacturer's protocol). If the samples contain detergents like Triton X-100 then BCA assay is the best choice. For samples that have proteins larger than 3 KDa in size Bradford assay is the best choice. Each method has advantages and disadvantages, plan your analysis considering your sample characteristics.

Proteins Protein quantification Colorimetric method

The most widely used method for protein quantification is by spectrophotometry. The concentration of the protein in the samples is measured at an absorbance of 280 nm. The absorbance of the sample protein is then plotted against a standard curve. This method allows for total protein quantification in a sample (cell and tissue extracts). Before analysing the concentration of protein in the sample, it is important to choose the right test method.  For high protein concentration samples (above 5 - 160 mg/ml) the best method is to use the Biuret test. For low concentrations samples (between 1 - 2000µg/ml) the best methods are Lowry assay, BCA assay, Bradford assay and coomassie blue (for exact sensitivity of the test kits you use, refer to manufacturer's protocol). If the samples contain detergents like Triton X-100 then BCA assay is the best choice. For samples that have proteins larger than 3 KDa in size Bradford assay is the best choice. Each method has advantages and disadvantages, plan your analysis considering your sample characteristics.

Proteins Protein quantification Fluorimetric method

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type SH-SY5Y human neuroblastoma

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type K562 human leukemia cells

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type A549 human adenocarcinomic human alveolar basal epithelial cells

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type human umbelical vein endothelial cells (HUVEC)

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type human primary corneal epithelial cells

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms